

# Overview of the Experiment

BNL – GSI Meeting, Brookhaven National Laboratory, November 21<sup>st</sup> - 22<sup>nd</sup> 2011 Lars Schmitt, GSI Darmstadt

- Antiprotons at FAIR
- PANDA Physics and Spectrometer

Highlights: GEM Tracker, DIRC, PWO Calorimeter

Cooperation Topics



# Facility for Antiproton and Ion Research



### **New facility featuring:**

Rare isotope beams, heavy ion beams, anti-protons

→ Optimal usage of accelerator facilities



PANDA Overview L. Schmitt, GSI

# Layout of the Facility

### **Primary beams**

- U up to 35 AGeV
- Protons up to 30 GeV/c
- 100-1000x more

#### Secondary beams

- Broad range of rare isotopes, 10000x more
- ₱: 0-15 GeV/c

#### Storage and cooler rings

- Radioactive beams
- e A (or p A) collider
- Antiprotons



# **Antiprotons at FAIR**



### **Antiproton production**

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

#### **Modularised Start Version**

- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity





# **Antiprotons at FAIR**



### **Antiproton production**

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

#### **Modularised Start Version**

- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity





# **Antiprotons at FAIR**



### **Antiproton production**

- Proton Linac 70 MeV
- Accelerate p in SIS18 / 100
- Produce p on Cu target
- Collection in CR, fast cooling
- Accumulation in RESR, slow cooling
- Storage in HESR and usage in PANDA

#### **Modularised Start Version**

- RESR is postponed (Mod. 4)
- Accumulation in HESR
- 10x lower luminosity





# **High Energy Storage Ring**

#### **HESR Parameters**

- Storage ring for internal target
- Initially also used for accumulation
- Injection of p at 3.7 GeV/c
- Slow synchrotron (1.5-15 GeV/c)
- Luminosity up to L~ 2x10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Stochastic & electron cooling
- Energy resolution ~50 keV
- Tune E<sub>CM</sub> to probe resonance
- Get precise m and Γ







# The PANDA Experiment at FAIR



# Physics Goals of PANDA

### **Hadron Spectroscopy**

**Experimental Goals:** mass, width & quantum numbers J<sup>PC</sup> of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D<sub>s</sub>(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution



# Physics Goals of PANDA

### **Hadron Spectroscopy**

**Experimental Goals:** mass, width & quantum numbers J<sup>PC</sup> of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D<sub>s</sub>(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution

### **Hadron Structure**

#### **Generalized Parton Distributions**

→ Formfactors and structure functions, L<sub>a</sub>

Timelike Nucleon Formfactors
Drell-Yan Process





# Physics Goals of PANDA

### **Hadron Spectroscopy**

**Experimental Goals:** mass, width & quantum numbers J<sup>PC</sup> of resonances

Charm Hadrons: charmonia, D-mesons, charm baryons

→ Understand new XYZ states, D<sub>s</sub>(2317) and others

Exotic QCD States: glueballs, hybrids, multi-quarks Spectroscopy with Antiprotons:

Production of states of all quantum numbers Resonance scanning with high resolution



**Generalized Parton Distributions** 

→ Formfactors and structure functions, L<sub>a</sub>

Timelike Nucleon Formfactors
Drell-Yan Process

### **Nuclear Physics**

Hypernuclei: Production of double Λ-hypernuclei

γ-spectroscopy of hypernuclei, YY interaction

Hadrons in Nuclear Medium













### **Detector requirements:**

- 4π acceptance
- High rate capability:
   2x10<sup>7</sup> s<sup>-1</sup> interactions
- Efficient event selection
- → Continuous acquisition
- Momentum resolution ~1%
- Vertex info for D, K<sup>0</sup><sub>S</sub>, Y
   (cτ = 317 μm for D<sup>±</sup>)
- → Good tracking
- Good PID (γ, e, μ, π, K, p)
- → Cherenkov, ToF, dE/dx
- γ-detection 1 MeV 10 GeV
- → Crystal Calorimeter



### TARGET SPECTROMETER FORWARD SPECTROMETER



PANDA Overview

L. Schmitt, GSI

### TARGET SPECTROMETER FORWARD SPECTROMETER



### TARGET SPECTROMETER FORWARD SPECTROMETER



## Micro Vertex Detector

### Design of the MVD

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
  - ToPiX chip, 0.13µm CMOS
  - Thinned sensor wafers
- Outer layers: double sided strips
  - Rectangles & trapezoids
  - 128 channel readout ASIC
- Mixed forward disks (pixel/strips)

### **Challenges**

- Low mass supports
- Cooling in a small volume
- Radiation tolerance



## Micro Vertex Detector



### **Design of the MVD**

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 μm²)
  - ToPiX chip, 0.13µm CMOS
  - Thinned sensor wafers
- Outer layers: double sided strips
  - Rectangles & trapezoids
  - 128 channel readout ASIC
- Mixed forward disks (pixel/strips)

### **Challenges**

- Low mass supports
- Cooling in a small volume
- Radiation tolerance



Radiation map of  $\overline{P}ANDA$  MVD



# Central Tracking Detectors

#### **Central Tracker:**

- Design figures:
  - $\bullet$   $\sigma_{ro}$ ~150 $\mu$ m ,  $\sigma_{z}$ ~1 $\mu$ m
  - δp/p~1% (with MVD)
  - Material budget ~1% X<sub>0</sub>
- Straw Tube Tracker Design:
  - 27 µm thin mylar tubes, 1 cm Ø
  - Stability by 1 bar overpressure
  - Planar layers for compactness
  - Skewed layers for z-coordinate

#### **Forward GEM Tracker:**

- Large area GEM foils
- Ultra thin coating
- 3 Stations



#### **Central Tracker:**

L = 150 cm

 $R_{in} = 15 \text{ cm}$ 

 $R_{out} = 42 \text{ cm}$ 

Readout 15 cm in z

#### **GEM Tracker:**

z = 120-180 cm

 $R_{in} = 5 \text{ cm}$ 

 $R_{out} = 42-88 \text{ cm}$ 

Readout at periphery



# The Straw Tube Tracker

### **Detector Layout**

 4204 straws in 20-26 layers, of which 8 layers skewed at ~3°

Tube made of 27 µm thin Al-mylar, Ø=1cm

 $R_{in}$ = 150 mm,  $R_{out}$ = 420 mm, I=1500 mm

Self-supporting straw double layers at ~ 1 bar overpressure (Ar/CO<sub>2</sub>)

### **Material Budget**

- Max. 26 layers,
- 0.05 % X/X<sub>0</sub> per layer
- Total 1.3% X/X<sub>0</sub>

#### **Detector Studies**

- Prototype construction & tests
- Aging tests: up to 1.2 C/cm<sup>2</sup>
- Cosmic tests for dE/dx
- Simulations of field and detector



# Forward GEM Tracker

### Forward Tracking inside Solenoid

- 3-4 stations with 4 projections each
  - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils from CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
- → Approx. 35000 channels total
- Challenge to minimize material









# **GEM Tracker Design**



- Modular design, stable circular arrangement
- Large GEM foils glued in the middle
- Carbon fibre reinforced support riddle
- Cable ducts with integrated power and cooling



Light-weight support riddle





PANDA Overview L. Schmitt, GSI

# **GEM Tracker Design**





Light-weight support riddle

- Modular design, stable circular arrangement
- Large GEM foils glued in the middle
- Carbon fibre reinforced support riddle
- Cable ducts with integrated power and cooling





PANDA Overview L. Schmitt, GSI

# **Prototype GEM TPC**



### **GEM-TPC Concept**

- Continuous sampling
- GEMs to reduce ion feedback
- Approx. 10k pads
- Gas Ne/CO<sub>2</sub>, material ~ 1% X/X<sub>0</sub>
- Challenges: space charge and high data rate



#### **GEM-TPC Collaboration**

TU Munich, GSI Darmstadt, HISKP Bonn, SMI Vienna, Heidelberg University

Project started as development for PANDA, but is now continued as independent technology development



# Assembly of GEM-TPC











PANDA Overview L. Schmitt, GSI

# Results of GEM TPC in FOPI



# Forward Tracking

### **Tracking in Forward Spectrometer**

- 3 stations with 2 chambers each
  - FT1&2 : between solenoid and dipole
  - FT3&4 : in the dipole gap
  - FT5&6 : largest chambers behind dipole
- Straw tubes arranged in double layers
  - 27 µm thin mylar tubes, 1 cm Ø
  - Stability by 1 bar overpressure
- 3 projections per chamber (0°, ±5°)

#### Modular layout of straws







# PANDA DIRC Detectors

### **Detection of Internally Reflected Cherenkov light**







### **BaBar type Barrel DIRC**



- Pin hole focusing
- Large water tank
- Readout with PMTs(BaBar 11000, PANDA 7000)



# **PANDA DIRC Detectors**









### **PANDA Barrel DIRC**



- Shorter radiator
- No large tank



6 5 ii -

# **PANDA DIRC Detectors**

### **Detection of Internally Reflected Cherenkov light**







### **PANDA Barrel DIRC**

- Shorter radiator
- No large tank



### **PANDA Disc DIRC**

Disc shaped radiator



L. Schmitt, GSI

# **DIRC Radiator Production**

- Production of large fused silica pieces (bars, plates, disk segments) is challenging
  - DIRCs require mechanical tolerances on flatness, squareness, and parallelism with optical finish and long sharp edges
    - → difficult, potentially expensive, few qualified vendors worldwide
- BABAR-DIRC used bars polished to 5 Å rms, non-squareness < 0.25 mrad, successfully done for BABAR, need to qualify/retrain vendors 10+ years later
- Can afford to relax some of those specs for PANDA DIRCs due to shorter photon paths (surface roughness 10-20 Å rms, non-squareness 0.5-1 mrad, etc)
- Several good candidates for synthetic fused silica material (Heraeus, Corning)
  - Working with potential vendors in Europe and USA obtained prototype bars, plates, disk segments from several companies, verifying surfaces and angles









# **DIRC Photon Detection**

- PANDA DIRCs pose challenges to fast compact multi-pixel photon detectors
- Single photon sensitivity, low dark count rate
- Reasonably high photo detection efficiency
- Fast timing:  $\sigma(TTS) \approx 100 \text{ ps}$
- Few mm position resolution
- Operation in up to 1 1.5 T magnetic field
- Tolerate high rates up to 2 MHz/cm<sup>2</sup> (Barrel: 0.2 MHz/cm<sup>2</sup>)
- Long lifetime: 4-10 C/cm<sup>2</sup> per year at 10<sup>6</sup> gain (Barrel: 0.5 C/cm<sup>2</sup>/yr)
- No currently available sensor matches all criteria promising candidates: MCP-PMTs, MAPMTs, SiPM
- Starting aging test of two very new enhanced lifetime MCP-PMTs side-by-side: Hamamatsu SL-10 and Burle 85112 both may be (almost) acceptable for barrel DIRC
- Digital SiPM (Philips) promising sensor for Disk: excellent timing and lifetime, integrated readout electronics, masking of hot pixels
  But: needs cooling, needs redesign for single photons, new technology, prototypes only



PANDA Overview

# **DIRC Prototype Work**









### Radiator Testbench at GSI



- 1) Laser (405, 532, 635 nm)
- 2) Polarizer
- 3) Beam splitter
- 4) Diaphragm
- 5) Brewster mirror
- 6) Bar on x, y stage
- 7) Value Diode
- 8) Reference Diode



**PANDA Overview** 

# Scintillator Tile Hodoscope

#### **Detector for ToF and event timing**

- Scintillator tiles 3x3x0.5 cm³
  - → BC404, BC408 or BC420
  - → Space points with precision timing
  - → Lowest possible material budget
- Photon readout with 2 SiPMs (3x3 mm²)
  - High PDE, time resolution, rate capability
  - Work in B-fields, small, robust, low bias
  - High intrinsic noise
  - Temperature dependence
- Goal for time resolution: 100 ps
- ASIC for SiPM readout





# **Electromagnetic Calorimeters**

### **PANDA PWO Crystals**

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
  - improved PWO II (2xCMS)
  - operation at -25°C (4xCMS)
- Challenges:
  - temperature stable to 0.1°C
  - control radiation damage
  - low noise electronics
- Delivery of crystals started





# **Electromagnetic Calorimeters**

### **PANDA PWO Crystals**

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
  - improved PWO II (2xCMS)
  - operation at -25°C (4xCMS)
- Challenges:
  - temperature stable to 0.1°C
  - control radiation damage
  - low noise electronics
- Delivery of crystals started



#### **Barrel Calorimeter**

- 11000 PWO Crystals
- LAAPD readout, 2x1cm<sup>2</sup>
- $\sigma(E)/E \sim 1.5\%/\sqrt{E} + const.$

### **Forward Endcap**

- 4000 PWO crystals
- High occupancy in center
- LA APD or VPT



**Backward Endcap** for hermeticity, 560 PWO crystals **Forward EMC** shashlyk behind dipole



## Readout with Large Area APD

- Development of LA APDs with Hamamatsu
  - Large area at acceptable capacitance:
     4x area of previously available APDs
  - Excellent performance at RT and -25°C
  - Radiation tolerance up to 10<sup>13</sup> protons/cm<sup>2</sup> in particular at -25°C





1x1 cm<sup>2</sup> 0.5x0.5 cm<sup>2</sup>

- Screening of all APDs needed to reach best resolution and stability
- A mass screening facility is under construction at GSI

Courtesy A. Wilms



### Readout with Large Area APD

- Development of LA APDs with Hamamatsu
  - Large area at acceptable capacitance:4x area of previously available APDs
  - Excellent performance at RT and -25°C
  - Radiation tolerance up to 10<sup>13</sup> protons/cm<sup>2</sup> in particular at -25°C
  - To accommodate 2 APDs per crystal: rectangular APD with 7x14 mm²
- Readout via discrete amplifier or APFEL ASIC





10x10 mm<sup>2</sup> and 7x14 mm<sup>2</sup>



18mm



- 2 channels/ 2 ranges
- overall range 1 10.000
- noise level (cooled)< 2 MeV</li>

Courtesy A. Wilms



## **PWO Prototype Performance**

#### **Beam Tests at MAMI**



deposited energy / MeV



- Single 1x1 cm<sup>2</sup> APD with discrete amplifier
- Digitization: shaping /peak-sensing ADC
- Even improved with 100 MHz sampling ADC
- Ongoing tests with APFEL ASIC

Courtesy R. Novotny



## Radiation Damage in PWO

- Radiation induced absorption reduces light yield
- At RT recovery by annealing
- At -25°C annealing is slower
- PANDA crystals: control radiation induced absorption loss dk





Courtesy R. Novotny



## Stimulated Recovery of PWO

#### **Discovery of stimulated recovery**

- Measurement at T=-25°C
- Irradiation with 30 Gy (60Co)
- Damage and recovery characterized by light yield (60Co)
- Illumination with LEDs of different color
- Crystals of different rad. hardness (dk)





- Online recovery with IR light
- Fast recovery with blue light

Courtesy R. Novotny



## **Muon Detector System**

#### Muon system rationale:

- Low momentum particles
- High background of pions
- Multi-layer range system

#### Muon system layout:

- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Forward Range System:
  - 16+2 layers
  - Iron absorbers
- Detectors: Drift tubes with wire & cathode strip readout







## **PANDA Data Acquisition**

#### Self triggered readout

- Components:
  - Time distribution system
  - Intelligent frontends
  - Powerful compute nodes
  - High speed network
- Data Flow:
  - Data reduction
  - Local feature extraction
  - Data burst building
  - Event selection
  - Data logging after online reconstruction
- Programmable Physics Machine





### **Topics for Cooperation**



#### **Physics Topics**

- Structure functions
  - Drell Yan process
  - Transversity
- Hadrons in Medium
  - Mass and width modifications
  - Suppression of states
- Hypernuclei

#### **Detector Topics**

- Expertise at GSI:
  - Large area APDs
  - Development of DIRCs
  - Light-weight GEM-TPC development
- Expertise at BNL:
  - Polarized beams
  - GEM detectors
  - → Coop on large area GEMs
  - Silicon vertex detectors
  - → Coop on Readout ASICs
  - High rate DAQ systems



# Summary



#### **BNL** future developments

- High luminosity running at RHIC
- EIC: Physics of structure functions
- → New high rate setups

#### PANDA & FAIR start in hadron physics from 2018

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles
- Beyond PANDA further plans for spin physics at FAIR exist

#### Cooperation of GSI/FAIR and BNL

- Mutual benefits for future
- Exchange of expertise
- Physics and detector topics



## **Backup Slides**





## Single Mask GEM







Chemical Polyimide etching



Copper electro etching





Stripping







Second Polyimide etching



Reality

Rui Oliveira, CERN



## Single Mask GEM



#### Single mask GEM from CERN



#### Double mask GEM from external company



#### Critical items:

- Time critical etching
- Highly homogeneous etching solution



# Largest Size GEM Foils: CMS

CMS Muon Upgrade: 99 cm x 45.5cm x 22 cm (6 pieces)





PANDA Overview L. Schmitt, GSI